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The novel precursor [ButNHP(m-NBut)2PNH2] (1) provides
easy access to polycyclic main group systems; reaction with
Sb(NMe2)3 gives the tricyclic species {[ButNHP(m-NBut)2-
P}2{Me2NSb(m-N)}2] (2), whereas reaction with an excess of
BunLi results in elimination of LiNH2 and the formation of
the co-complex [{ButNP(m-NBut)2P}2N]Li3 (BunLi)2, (3),
containing the unprecedented [{ButNP(m-NBut)2P}2N]32

trianion.

In recent years the synthesis and coordination chemistry of a
range of new anionic ligands based on p-block element
frameworks has become a rich area of study. This work has been
dominated by a number of related Group 15 and 16 element/
nitrogen arrangements, such as the tripodal systems [E(NR)3]22

(E = S–Te)1 and [E(NR)3]32 (E = As, Sb),2 which provide the
means to an extensive range of cage complexes, containing
well-defined mixed-element compositions.2 Such cages have
potentially far-ranging applications as single-source materials
to a number of technologically important mixed-element
phases.3 The normally easy access to these multifunctional p-
block element ligand arrangements contrasts with the generally
far more involved synthetic procedures required to prepare
related systems based on carbon. However, a key issue is
whether systematic routes can be devised to more elaborate
polyfunctional p-block element species (beyond the simple
systems previously investigated). To this end, we present here a
simple design approach to a family of polycyclic Group 15
imido frameworks, providing a new direction in this area.

The principal starting material for these investigations,
[ButNHP(m-NBut)2PNH2] (1), is prepared in good yield (59%)
by the reaction of [ButNHP(m-NBut)2PCl]4 with NH3(g) in THF
solution.† Previous studies of imido phosphorus anions have
dealt almost exclusively with species of the type [RANP(m-
NR)]2

22, prepared by deprotonation of [RANHP(m-NR)]2.5
Although 1 has a similar P2N2 core arrangement to the latter, it
presents the unique opportunity for deprotonation at up to three
positions (i.e. the ButNH and NH2 groups). The reaction of 1
with Sb(NMe2)3 (1+1 equiv.) in toluene gives [{ButNHP(m-
NBut)2P}2{Me2NSb(m-N)}2] (2) (Scheme 1). This result is
similar to that observed between simple primary amines
(RNH2) and Sb(NMe2)3,6 which gives dimers of the type
[Me2NSb(m-NR)]2. However, in the case of 2 a tricyclic
arrangement is established in a single step. The low reactivity of
the ButNH protons in 2 (which could potentially react further
with the Sb-bonded NMe2 groups) contrasts with the deprotona-
tion of 1 with BunLi (1+3 equiv., respectively). The product is
the unusual co-complex [{ButNP(m-NBut)2P}2N]Li3·(BunLi)2
(3), the framework of which results from a combination of
deprotonation and coupling of the dimer units of 1 (with
elimination of LiNH2) (see ESI†).

The low-temperature X-ray structures of 1, 2 and 3 were
obtained.‡ Although simple, 1 is the first non-symmetrically
substituted cyclophosphazane containing the NH2 functionality
(Fig. 1). Related species containing the NH2 functionality are

rare7 and the only structurally characterised dimers previously
reported are chlorides of the type [R2NP(m-NRA)(m-NRB)PCl]8

and [ButNHP(m-NBut)2PCl]4 (the immediate precursor to 1).
The cisoid disposition of the ButNH and NH2 groups found in
molecules of 1 is similar to that observed for the previous
chlorides. However, the similarity of the 1H and 31P NMR
behaviour of 1 in toluene solution with that of [PhNHP(m-
NPh)]2 suggests that two closely related cisoid isomers are
present (in ca. 2+1 ratio, corresponding to rotation of the ButNH
group exo or endo to the P2N2 ring).9

Complex 2 (Fig. 2) has a tricyclic arrangement composed of
a central Sb2N2 ring symmetrically substituted with bridging
[ButNHP(m-NBut)2P] groups. The orientation of these ring units
approximately trans to the Sb2N2 ring plane gives molecules an
overall S-shape, in which the cisoid conformation found in the
precursor 1 is retained in the [ButNHP(m-NBut)2PN] ring units
of 2. The bias for the cisoid conformation of these substituents
is apparently reinforced by H-bonding of the terminal ButNH
protons to the trans Me2N groups of the Sb2N2 core
[N(2)…N(5) 3.178(9) Å (H(2)…N(5) 2.34 Å),
N(2)H(2A)…N(5A) 165.3°]. Although (unlike 1) the

† Electronic supplementary information (ESI) available: synthetic and
crystallographic details for 1–3, See http://www.rsc.org/suppdata/cc/b0/
b009000j/

Scheme 1

Fig. 1 Cisoid conformation of molecules of 1. Key bond lengths (Å) and
angles (°): P(1)–N(1) 1.728(1), P(2)–N(2) 1.663(2), P(2)–N(1) 1.729(1),
P(2)–N(3) 1.663(2); N(1)–P(1)–N(2) 105.54(7), N(1)–P(1)–N(1A)
80.79(9), N(1)–P(2)–N(3) 105.81(8), N(1)–P(2)–N(1A) 80.78(9), P(1)–
N(1)–P(2) 97.48(7).
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[ButNHP(m-NBut)2PN] units of 2 are no longer symmetric,
deprotonation of the NH2 group of the precursor has compar-
atively little effect on the overall bond lengths and angles found
in these units.

The surprising result of attempted deprotonation of 1 with
BunLi is the formation of the elaborate cage complex 3,
consisting of a [{ButNP(m-NBut)2P}2N]32 trianion coordinated
to three Li+ cations and further associated with two monomer
units of BunLi (Fig. 3). Although uncommon, a number of co-
complexes with BunLi of this kind have been structurally
characterised in recent years.10 The composition of 3 resembles
that of [Al2(NHBut)3(NBut)3Li3·2BunLi], which contains an
[Al2(NHBut)3(NBut)3]32 trianion unit and two BunLi mono-
mers.11c Nonetheless, the bicyclic [{ButNP(m-NBut)P}2N]2

32

trianion is an unprecedented Group 15 imido ligand arrange-
ment. The closest comparison that can be made with the trianion
framework of 3 is with the neutral cyclophosphazane

[{PhNHP(m-NPh)2P}2NPh] (a product of condensation of
PhNH2 with PCl3), consisting of a similar arrangement of two
P2N2 rings linked by an NPh bridge.11 All five of the Li+ cations
of 3 have distinct coordination geometries. The positioning of
Li(2) and Li(3), and Li(4) and Li(5) within the ‘hemisphere’ of
the coordinating [{ButNP(m-NBut)P}2N]2

32 trianion of 3 is
broadly similar. Each of these cations is coordinated by one of
the m-NBut groups and by the terminal ButN group of the
[ButNP(m-NBut)P] halves of the trianion unit. However,
presumably owing to the geometric constraints involved, the m-
N centre linking the [ButNP(m-NBut)P] units [N(1)] only bonds
to Li(2) and Li(3) [cf. > 2.84 Å for Li(4,5)…N(2)], giving a
pseudo-cubane fragment on this side of the molecule which is
reminiscent of the structure of [{ButNP(m-NBut)}2Li2.2THF].5b

The two Bun groups bridge Li+ cations associated with each
[ButNP(m-NBut)P] half of the trianion. The involvement of the
a-C and b-C centres of each of the Bun2 anions with Li(2) and
Li(4) is similar to that found in the hexameric structure of
[BunLi]6 in the solid state [b-C(–H)…Li ca. 2.28 Å;12 cf.
C(2)…Li(2) 2.461(6) and C(6)…Li(4) 2.341 (6) Å in 3]. The
remaining Li cation [Li(1)] is located above the pseudo-cubane
half of the cage, being bonded to the a-C atoms of both of the
(Bun)2 anions and to a terminal ButN group. Further agostic
interaction with the Me group of this ButN ligand [C(74)…Li(1)
2.783(6) Å15 results in a pseudo-tetrahedral geometry for
Li(1).
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Fig. 2 Tricyclic molecules of 2. Key bond lengths (Å) and angles (°): Sb(1)–
N(4) 2.071(9), Sn(1)–N(4A) 2.048(9), Sb(1)–N(5) 2.06(1), P(2)–N(4)
1.680(9), P(2)–N(1) 1.726(9), P(2)–N(3) 1.729(9), P(1)–N(1) 1.739(9),
P(1)–N(3) 1.778(9), P(1)–N(2) 1.66(1), N(2)…N(5) 3.178(9) [H(2)…N(5)
2.34, N(2)H(2A)…N(5A) 165.3]; N(4)–Sb(1)–N(4A) 77.3(4), Sb(1)–N(4)–
Sb(1A) 102.7(4), N(4,4A)–Sb(1)–N(5) mean 100.2, Sb(1)–N(4)–P(2)
130.5(5), Sb(1A)–N(4)–P(2) 126.8(5), N(4)–P(2)–N(1) 108.3(5), N(4)–
P(2)–N(3) 101.0(4), N(1)–P(2)–N(3) 82.5(4), P(2)–N(1,3)–P(1) mean 97.6,
N(1)–P(1)–N(3) 80.8(4), N(2)–P(1)–N(1,3) mean 105.0.

Fig. 3 Cage structure of the co-complex 3. Key bond lengths (Å) and angles
(°): within the [{ButNP(m-NBut)P}2N]2

32 trianion: P(1)–N(6) 1.655(3),
P(1)–N(2) 1.792(3), P(1)–N(3) 1.784(3), P(2)–N(2) 1.774(3), P(2)–N(3)
1.762(3), P(2)–N(1) 1.676(3), P(3)–N(1) 1.689(3), P(3)–N(4) 1.768(2),
P(3)–N(5) 1.768(2), P(4)–N(4) 1.779(2), P(4)–N(5) 1.785(2), P(4)–N(7)
1.668(3); N(2,4)–P(1,4)–N(3,5) mean 82.3, N(2,4)–P(2,3)–N(3,5) mean
83.3, P(2)–N(1)–P(3) 113.1(1); within Li–N/C framework: terminal ButN–
Li(2,3,4,5) range 1.987(6)–2.208(6), m-ButN–Li(2,3,4,5) range
2.014(6)–2.102(6), N(1)–Li(2) 2.313(6), N(1)–Li(3) 2.193(7), N(7)–Li(1)
2.147(7), C(1,5)–Li(2,3,4,5) range 2.124(7)–2.218(6), C(1,5)–Li(1) mean
2.26, C(2)…Li(2) 2.461(6), C(6)…Li(4) 2.341(6), C(74)…Li(4) 2.783(6).
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